Popis: |
In automated crop protection tasks such as weed control, disease diagnosis, and pest monitoring, deep learning has demonstrated significant potential. However, these advanced models rely heavily on high-quality, diverse datasets, often limited and costly in agricultural settings. Traditional data augmentation can increase dataset volume but usually lacks the real-world variability needed for robust training. This study presents a new approach for generating synthetic images to improve deep learning-based object detection models for intelligent weed control. Our GenAI-based image generation pipeline integrates the Segment Anything Model (SAM) for zero-shot domain adaptation with a text-to-image Stable Diffusion Model, enabling the creation of synthetic images that capture diverse real-world conditions. We evaluate these synthetic datasets using lightweight YOLO models, measuring data efficiency with mAP50 and mAP50-95 scores across varying proportions of real and synthetic data. Notably, YOLO models trained on datasets with 10% synthetic and 90% real images generally demonstrate superior mAP50 and mAP50-95 scores compared to those trained solely on real images. This approach not only reduces dependence on extensive real-world datasets but also enhances predictive performance. The integration of this approach opens opportunities for achieving continual self-improvement of perception modules in intelligent technical systems. |