A Lorentz-Equivariant Transformer for All of the LHC
Autor: | Brehmer, Johann, Bresó, Víctor, de Haan, Pim, Plehn, Tilman, Qu, Huilin, Spinner, Jonas, Thaler, Jesse |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and is equivariant under Lorentz transformations. The underlying architecture is a versatile and scalable transformer, which is able to break symmetries if needed. We demonstrate the power of L-GATr for amplitude regression and jet classification, and then benchmark it as the first Lorentz-equivariant generative network. For all three LHC tasks, we find significant improvements over previous architectures. Comment: 26 pages, 7 figures, 8 tables |
Databáze: | arXiv |
Externí odkaz: |