Autor: |
Its, Alexander R., Miyahara, Kenta, Yattselev, Maxim L. |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Motivated by the simplest case of tt*-Toda equations, we study the large and small $x$ asymptotics for $x>0$ of real solutions of the sinh-Godron Painlev\'e III($D_6$) equation. These solutions are parametrized through the monodromy data of the corresponding Riemann-Hilbert problem. This unified approach provides connection formulae between the behavior at the origin and infinity of the considered solutions. |
Databáze: |
arXiv |
Externí odkaz: |
|