Proactive Fraud Defense: Machine Learning's Evolving Role in Protecting Against Online Fraud

Autor: Chy, Md Kamrul Hasan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
DOI: 10.30574/wjarr.2024.23.3.2811
Popis: As online fraud becomes more sophisticated and pervasive, traditional fraud detection methods are struggling to keep pace with the evolving tactics employed by fraudsters. This paper explores the transformative role of machine learning in addressing these challenges by offering more advanced, scalable, and adaptable solutions for fraud detection and prevention. By analyzing key models such as Random Forest, Neural Networks, and Gradient Boosting, this paper highlights the strengths of machine learning in processing vast datasets, identifying intricate fraud patterns, and providing real-time predictions that enable a proactive approach to fraud prevention. Unlike rule-based systems that react after fraud has occurred, machine learning models continuously learn from new data, adapting to emerging fraud schemes and reducing false positives, which ultimately minimizes financial losses. This research emphasizes the potential of machine learning to revolutionize fraud detection frameworks by making them more dynamic, efficient, and capable of handling the growing complexity of fraud across various industries. Future developments in machine learning, including deep learning and hybrid models, are expected to further enhance the predictive accuracy and applicability of these systems, ensuring that organizations remain resilient in the face of new and emerging fraud tactics.
Comment: World Journal of Advanced Research and Reviews (2024)
Databáze: arXiv