Quantum Merlin-Arthur with an internally separable proof

Autor: Bassirian, Roozbeh, Fefferman, Bill, Leigh, Itai, Marwaha, Kunal, Wu, Pei
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We find a modification to QMA where having one quantum proof is strictly less powerful than having two unentangled proofs, assuming EXP $\ne$ NEXP. This gives a new route to prove QMA(2) = NEXP that overcomes the primary drawback of a recent approach [arXiv:2402.18790 , arXiv:2306.13247] (QIP 2024). Our modification endows each proof with a form of *multipartite* unentanglement: after tracing out one register, a small number of qubits are separable from the rest of the state.
Comment: 30+17 pages, 1+2 figures, 1+1 tables
Databáze: arXiv