Autor: |
Kim, Arlene K. H., Kur, Gil, Guntuboyina, Adityanand |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
The Grenander estimator is a well-studied procedure for univariate nonparametric density estimation. It is usually defined as the Maximum Likelihood Estimator (MLE) over the class of all non-increasing densities on the positive real line. It can also be seen as the MLE over the class of all scale mixtures of uniform densities. Using the latter viewpoint, Pavlides and Wellner~\cite{pavlides2012nonparametric} proposed a multivariate extension of the Grenander estimator as the nonparametric MLE over the class of all multivariate scale mixtures of uniform densities. We prove that this multivariate estimator achieves the univariate cube root rate of convergence with only a logarithmic multiplicative factor that depends on the dimension. The usual curse of dimensionality is therefore avoided to some extent for this multivariate estimator. This result positively resolves a conjecture of Pavlides and Wellner~\cite{pavlides2012nonparametric} under an additional lower bound assumption. Our proof proceeds via a general accuracy result for the Hellinger accuracy of MLEs over convex classes of densities. |
Databáze: |
arXiv |
Externí odkaz: |
|