$g$-vectors and $DT$-$F$-polynomials for Grassmannians

Autor: Bakshi, Sarjick, Keller, Bernhard
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We review $\mathrm{Hom}$-infinite Frobenius categorification of cluster algebras with coefficients and use it to give two applications of Jensen--King--Su's Frobenius categorification of the Grassmannian: 1) we determine the $g$-vectors of the Pl\"ucker coordinates with respect to the triangular initial seed and 2) we express the $F$-polynomials associated with the Donaldson--Thomas transformation in terms of $3$-dimensional Young diagrams thus providing a new proof for a theorem of Daping Weng.
Comment: 34 pages
Databáze: arXiv