$g$-vectors and $DT$-$F$-polynomials for Grassmannians
Autor: | Bakshi, Sarjick, Keller, Bernhard |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We review $\mathrm{Hom}$-infinite Frobenius categorification of cluster algebras with coefficients and use it to give two applications of Jensen--King--Su's Frobenius categorification of the Grassmannian: 1) we determine the $g$-vectors of the Pl\"ucker coordinates with respect to the triangular initial seed and 2) we express the $F$-polynomials associated with the Donaldson--Thomas transformation in terms of $3$-dimensional Young diagrams thus providing a new proof for a theorem of Daping Weng. Comment: 34 pages |
Databáze: | arXiv |
Externí odkaz: |