Global well-posedness of the fractional dissipative system in the framework of variable Fourier--Besov spaces
Autor: | Vergara-Hermosilla, Gastón, Zhao, Jihong |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we are concerned with the well-posed issues of the fractional dissipative system in the framework of the Fourier--Besov spaces with variable regularity and integrability indices. By fully using some basic properties of these variable function spaces, we establish the linear estimates in variable Fourier--Besov spaces for the fractional heat equation. Such estimates are fundamental for solving certain dissipative PDE's of fractional type. As an applications, we prove global well-posedness in variable Fourier--Besov spaces for the 3D generalized incompressible Navier--Stokes equations and the 3D fractional Keller--Segel system. Comment: 21 pages. arXiv admin note: text overlap with arXiv:2405.01209 |
Databáze: | arXiv |
Externí odkaz: |