Symmetric Cayley graphs on non-abelian simple groups of valency 7

Autor: Zhang, Xing, Feng, Yan-Quan, Yin, Fu-Gang, Wang, Hong
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\Gamma$ be a connected $7$-valent symmetric Cayley graph on a finite non-abelian simple group $G$. If $\Gamma$ is not normal, Li {\em et al.} [On 7-valent symmetric Cayley graphs of finite simple groups, J. Algebraic Combin. 56 (2022) 1097-1118] characterised the group pairs $(\mathrm{soc}(\mathrm{Aut}(\Gamma)/K),GK/K)$, where $K$ is a maximal intransitive normal subgroup of $\mathrm{Aut}(\Gamma)$. In this paper, we improve this result by proving that if $\Gamma$ is not normal, then $\mathrm{Aut}(\Gamma)$ contains an arc-transitive non-abelian simple normal subgroup $T$ such that $G
Databáze: arXiv