Autor: |
Stollenwerk, Tobias, Huckfeldt, Pia Carlotta, Ulumuddin, Nisa Zakia Zahra, Schneider, Malik, Xie, Zhuocheng, Korte-Kerzel, Sandra |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. We investigate SmCo$_2$ and SmCo$_5$ as fundamental building blocks and compare them to the structurally related SmCo$_3$ and Sm$_2$Co$_{17}$ phases. Nanoindentation and micropillar compression tests were performed to characterize the primary slip systems, complemented by generalized stacking fault energy calculations via atomic-scale modeling. Our results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials. |
Databáze: |
arXiv |
Externí odkaz: |
|