Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories

Autor: Cochran, Tyler A., Jobst, Bernhard, Rosenberg, Eliott, Lensky, Yuri D., Gyawali, Gaurav, Eassa, Norhan, Will, Melissa, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Bovaird, Jenna, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Higgott, Oscar, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobris, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Gammon-Smith, Adam, Pollmann, Frank, Knap, Michael, Roushan, Pedram
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.
Databáze: arXiv