Popis: |
In this paper, we explore the capabilities of multimodal inputs to 3D Gaussian Splatting (3DGS) based Radiance Field Rendering. We present LiDAR-3DGS, a novel method of reinforcing 3DGS inputs with LiDAR generated point clouds to significantly improve the accuracy and detail of 3D models. We demonstrate a systematic approach of LiDAR reinforcement to 3DGS to enable capturing of important features such as bolts, apertures, and other details that are often missed by image-based features alone. These details are crucial for engineering applications such as remote monitoring and maintenance. Without modifying the underlying 3DGS algorithm, we demonstrate that even a modest addition of LiDAR generated point cloud significantly enhances the perceptual quality of the models. At 30k iterations, the model generated by our method resulted in an increase of 7.064% in PSNR and 0.565% in SSIM, respectively. Since the LiDAR used in this research was a commonly used commercial-grade device, the improvements observed were modest and can be further enhanced with higher-grade LiDAR systems. Additionally, these improvements can be supplementary to other derivative works of Radiance Field Rendering and also provide a new insight for future LiDAR and computer vision integrated modeling. |