Rigidity for Einstein manifolds under bounded covering geometry
Autor: | Si, Cuifang, Xu, Shicheng |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note we prove three rigidity results for Einstein manifolds with bounded covering geometry. (1) An almost flat manifold $(M,g)$ must be flat if it is Einstein, i.e. $\operatorname{Ric}_g=\lambda g$ for some real number $\lambda$. (2) A compact Einstein manifolds with a non-vanishing and almost maximal volume entropy is hyperbolic. (3) A compact Einstein manifold admitting a uniform local rewinding almost maximal volume is isometric to a space form. |
Databáze: | arXiv |
Externí odkaz: |