Scalar-mean rigidity theorem for compact manifolds with boundary
Autor: | Wang, Jinmin, Wang, Zhichao, Zhu, Bo |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove a scalar-mean rigidity theorem for compact Riemannian manifolds with boundary in dimension less than five by extending Schoen-Yau dimension reduction argument. As a corollary, we prove the sharp spherical radius rigidity theorem and best NNSC fill-in in terms of the mean curvature. Additionally, we prove a (Lipschitz) Listing type scalar-mean comparison rigidity theorem for these dimensions. Our results remove the spin assumption. Comment: 33 pages; minor changes |
Databáze: | arXiv |
Externí odkaz: |