Hybrid spin-phonon architecture for scalable solid-state quantum nodes

Autor: Peng, Ruoming, Wu, Xuntao, Wang, Yang, Zhang, Jixing, Geng, Jianpei, Dasari, Durga Bhaktavatsala Rao, Cleland, Andrew N., Wrachtrup, Jörg
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Solid-state spin systems hold great promise for quantum information processing and the construction of quantum networks. However, the considerable inhomogeneity of spins in solids poses a significant challenge to the scaling of solid-state quantum systems. A practical protocol to individually control and entangle spins remains elusive. To this end, we propose a hybrid spin-phonon architecture based on spin-embedded SiC optomechanical crystal (OMC) cavities, which integrates photonic and phononic channels allowing for interactions between multiple spins. With a Raman-facilitated process, the OMC cavities support coupling between the spin and the zero-point motion of the OMC cavity mode reaching 0.57 MHz, facilitating phonon preparation and spin Rabi swap processes. Based on this, we develop a spin-phonon interface that achieves a two-qubit controlled-Z gate with a simulated fidelity of $96.80\%$ and efficiently generates highly entangled Dicke states with over $99\%$ fidelity, by engineering the strongly coupled spin-phonon dark state which is robust against loss from excited state relaxation as well as spectral inhomogeneity of the defect centers. This provides a hybrid platform for exploring spin entanglement with potential scalability and full connectivity in addition to an optical link, and offers a pathway to investigate quantum acoustics in solid-state systems.
Databáze: arXiv