New characterization of $(b,c)$-inverses through polarity
Autor: | Laghmam, Btissam, Zguitti, Hassane |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we introduce the notion of $(b,c)$-polar elements in an associative ring $R$. Necessary and sufficient conditions of an element $a\in R$ to be $(b,c)$-polar are investigated. We show that an element $a\in R$ is $(b,c)$-polar if and only if $a$ is $(b,c)$-invertible. In particular the $(b,c)$-polarity is a generalization of the polarity along an element introduced by Song, Zhu and Mosi\'c [14] if $b=c$, and the polarity introduced by Koliha and Patricio [10]. Further characterizations are obtained in the Banach space context. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |