Writing finite simple groups of Lie type as products of subset conjugates
Autor: | Dona, Daniele |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The Liebeck-Nikolov-Shalev conjecture [LNS12] asserts that, for any finite simple non-abelian group $G$ and any set $A\subseteq G$ with $|A|\geq 2$, $G$ is the product of at most $N\frac{\log|G|}{\log|A|}$ conjugates of $A$, for some absolute constant $N$. For $G$ of Lie type, we prove that for any $\varepsilon>0$ there is some $N_{\varepsilon}$ for which $G$ is the product of at most $N_{\varepsilon}\left(\frac{\log|G|}{\log|A|}\right)^{1+\varepsilon}$ conjugates of either $A$ or $A^{-1}$. For symmetric sets, this improves on results of Liebeck, Nikolov, and Shalev [LNS12] and Gill, Pyber, Short, and Szab\'o [GPSS13]. During the preparation of this paper, the proof of the Liebeck-Nikolov-Shalev conjecture was completed by Lifshitz [Lif24]. Both papers use [GLPS24] as a starting point. Lifshitz's argument uses heavy machinery from representation theory to complete the conjecture, whereas this paper achieves a more modest result by rather elementary combinatorial arguments. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |