On a Generalization of Heyting Algebras II

Autor: Tabatabai, Amirhossein Akbar, Alizadeh, Majid, Memarzadeh, Masoud
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: A $\nabla$-algebra is a natural generalization of a Heyting algebra, unifying several algebraic structures, including bounded lattices, Heyting algebras, temporal Heyting algebras, and the algebraic representation of dynamic topological systems. In the prequel to this paper [3], we explored the algebraic properties of various varieties of $\nabla$-algebras, their subdirectly-irreducible and simple elements, their closure under Dedekind-MacNeille completion, and their Kripke-style representation. In this sequel, we first introduce $\nabla$-spaces as a common generalization of Priestley and Esakia spaces, through which we develop a duality theory for certain categories of $\nabla$-algebras. Then, we reframe these dualities in terms of spectral spaces and provide an algebraic characterization of natural families of dynamic topological systems over Priestley, Esakia, and spectral spaces. Additionally, we present a ring-theoretic representation for some families of $\nabla$-algebras. Finally, we introduce several logical systems to capture different varieties of $\nabla$-algebras, offering their algebraic, Kripke, topological, and ring-theoretic semantics, and establish a deductive interpolation theorem for some of these systems.
Comment: 55 pages
Databáze: arXiv