Prime Splitting and Common Index Divisors in Radical Extensions

Autor: Smith, Hanson
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We explicitly describe the splitting of odd integral primes in the radical extension $\mathbb{Q}(\sqrt[n]{a})$, where $x^n-a$ is an irreducible polynomial in $\mathbb{Z}[x]$. Our motivation is to classify common index divisors, the primes whose splitting prevents the existence of a power integral basis for the ring of integers of $\mathbb{Q}(\sqrt[n]{a})$. Among other results, we show that if $p$ is such a prime, even or otherwise, then $p\mid n$.
Comment: 23 pages. Comments welcome!
Databáze: arXiv