One-cusped complex hyperbolic 2-manifolds
Autor: | Deraux, Martin, Stover, Matthew |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper builds one-cusped complex hyperbolic $2$-manifolds by an explicit geometric construction. Specifically, for each odd $d \ge 1$ there is a smooth projective surface $Z_d$ with $c_1^2(Z_d) = c_2(Z_d) = 6d$ and a smooth irreducible curve $E_d$ on $Z_d$ of genus one so that $Z_d \smallsetminus E_d$ admits a finite volume uniformization by the unit ball $\mathbb{B}^2$ in $\mathbb{C}^2$. This produces one-cusped complex hyperbolic $2$-manifolds of arbitrarily large volume. As a consequence, the $3$-dimensional nilmanifold of Euler number $12d$ bounds geometrically for all odd $d \ge 1$. |
Databáze: | arXiv |
Externí odkaz: |