Quantum annealing versus classical solvers: Applications, challenges and limitations for optimisation problems

Autor: Quinton, Finley Alexander, Myhr, Per Arne Sevle, Barani, Mostafa, del Granado, Pedro Crespo, Zhang, Hongyu
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Quantum computing is rapidly advancing, harnessing the power of qubits' superposition and entanglement for computational advantages over classical systems. However, scalability poses a primary challenge for these machines. By implementing a hybrid workflow between classical and quantum computing instances, D-Wave has succeeded in pushing this boundary to the realm of industrial use. Furthermore, they have recently opened up to mixed integer linear programming (MILP) problems, expanding their applicability to many relevant problems in the field of optimisation. However, the extent of their suitability for diverse problem categories and their computational advantages remains unclear. This study conducts a comprehensive examination by applying a selection of diverse case studies to benchmark the performance of D-Wave's hybrid solver against that of industry-leading solvers such as CPLEX, Gurobi, and IPOPT. The findings indicate that D-Wave's hybrid solver is currently most advantageous for integer quadratic objective functions and shows potential for quadratic constraints. To illustrate this, we applied it to a real-world energy problem, specifically the MILP unit commitment problem. While D-Wave can solve such problems, its performance has not yet matched that of its classical counterparts.
Databáze: arXiv