On extremal nonexpansive mappings
Autor: | Bargetz, Christian, Dymond, Michael, Pirk, Katriin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the extremality of nonexpansive mappings on a nonempty bounded closed and convex subset of a normed space (therein specific Banach spaces). We show that surjective isometries are extremal in this sense for many Banach spaces, including Banach spaces with the Radon-Nikodym property and all $C(K)$-spaces for compact Hausdorff $K$. We also conclude that the typical, in the sense of Baire category, nonexpansive mapping is close to being extremal. Comment: 23 pages, minor changes to the previous version |
Databáze: | arXiv |
Externí odkaz: |