Popis: |
We study a variety of finite quasiperiodic configurations with magnetodielectric $\delta$-function plates created from simple substitution rules. While previous studies for $N$ bodies involved interactions mediated by a scalar field, we extended our analysis of Green's function and corresponding Casimir energy to the electromagnetic field using plates with magnetic and dielectric properties for handling finite-size quasiperiodic lattices. The Casimir energy is computed for a class of quasiperiodic structures built from $N$ purely conducting or permeable $\delta$-plates. The Casimir energy of this quasiperiodic sequence of plates turns out to be either positive or negative, indicating that the pressure from the quantum vacuum tends to cause the stack of plates to expand or contract depending on their arrangement. We also handle the transverse electric and transverse magnetic mode Green's functions for $\delta$-plates and derive the Faddeev-like equation with the transition matrix for $N$ purely conducting or permeable plates. |