A hot spots theorem for the mixed eigenvalue problem with small Dirichlet region
Autor: | Hatcher, Lawford |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that on convex domains, first mixed Laplace eigenfunctions have no interior critical points if the Dirichlet region is connected and sufficiently small. We also find two seemingly new estimates on the first mixed eigenvalue to give explicit examples of when the Dirichlet region is sufficiently small. Comment: Added two new theorems related to the optimization of the first mixed eigenvalue. Also updated the exposition and added new examples. 9 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |