Popis: |
Expanding the receptive field in a deep learning model for large-scale 3D point cloud segmentation is an effective technique for capturing rich contextual information, which consequently enhances the network's ability to learn meaningful features. However, this often leads to increased computational complexity and risk of overfitting, challenging the efficiency and effectiveness of the learning paradigm. To address these limitations, we propose the Local Split Attention Pooling (LSAP) mechanism to effectively expand the receptive field through a series of local split operations, thus facilitating the acquisition of broader contextual knowledge. Concurrently, it optimizes the computational workload associated with attention-pooling layers to ensure a more streamlined processing workflow. Based on LSAP, a Parallel Aggregation Enhancement (PAE) module is introduced to enable parallel processing of data using both 2D and 3D neighboring information to further enhance contextual representations within the network. In light of the aforementioned designs, we put forth a novel framework, designated as LSNet, for large-scale point cloud semantic segmentation. Extensive evaluations demonstrated the efficacy of seamlessly integrating the proposed PAE module into existing frameworks, yielding significant improvements in mean intersection over union (mIoU) metrics, with a notable increase of up to 11%. Furthermore, LSNet demonstrated superior performance compared to state-of-the-art semantic segmentation networks on three benchmark datasets, including S3DIS, Toronto3D, and SensatUrban. It is noteworthy that our method achieved a substantial speedup of approximately 38.8% compared to those employing similar-sized receptive fields, which serves to highlight both its computational efficiency and practical utility in real-world large-scale scenes. |