Continuity method for the Mabuchi soliton on the extremal Fano manifolds

Autor: Hisamoto, Tomoyuki, Nakamura, Satoshi
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We run the continuity method for Mabuchi's generalization of K\"{a}hler-Einstein metrics, assuming the existence of an extremal K\"{a}hler metric. It gives an analytic proof (without minimal model program) of the recent existence result obtained by Apostolov, Lahdili and Nitta. Our key observation is the boundedness of the energy functionals along the continuity method. The same argument can be applied to general $g$-solitons and $g$-extremal metrics.
Comment: 18 pages
Databáze: arXiv