Continuity method for the Mabuchi soliton on the extremal Fano manifolds
Autor: | Hisamoto, Tomoyuki, Nakamura, Satoshi |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We run the continuity method for Mabuchi's generalization of K\"{a}hler-Einstein metrics, assuming the existence of an extremal K\"{a}hler metric. It gives an analytic proof (without minimal model program) of the recent existence result obtained by Apostolov, Lahdili and Nitta. Our key observation is the boundedness of the energy functionals along the continuity method. The same argument can be applied to general $g$-solitons and $g$-extremal metrics. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |