Chain-of-Experts (CoE): Reverse Engineering Software Bills of Materials for JavaScript Application Bundles through Code Clone Search

Autor: Song, Leo, Ding, Steven H. H., Tian, Yuan, Li, Li Tao, Charland, Philippe, Walenstein, Andrew
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: A Software Bill of Materials (SBoM) is a detailed inventory of all components, libraries, and modules in a software artifact, providing traceability throughout the software supply chain. With the increasing popularity of JavaScript in software engineering due to its dynamic syntax and seamless supply chain integration, the exposure to vulnerabilities and attacks has risen significantly. A JavaScript application bundle, which is a consolidated, symbol-stripped, and optimized assembly of code for deployment purpose. Generating a SBoM from a JavaScript application bundle through a reverse-engineering process ensures the integrity, security, and compliance of the supplier's software release, even without access to the original dependency graphs. This paper presents the first study on SBoM generation for JavaScript application bundles. We identify three key challenges for this task, i.e., nested code scopes, extremely long sequences, and large retrieval spaces. To address these challenges, we introduce Chain-of-Experts (CoE), a multi-task deep learning model designed to generate SBoMs through three tasks: code segmentation, code classification, and code clone retrieval. We evaluate CoE against individual task-specific solutions on 500 web application bundles with over 66,000 dependencies. Our experimental results demonstrate that CoE offers competitive outcomes with less training and inference time when compared with combined individual task-specific solutions. Consequently, CoE provides the first scalable, efficient, and end-to-end solution for the SBoM generation of real-world JavaScript application bundles.
Databáze: arXiv