The linear independence of $1$, $\zeta(2)$, and $L(2,\chi_{-3})$
Autor: | Calegari, Frank, Dimitrov, Vesselin, Tang, Yunqing |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove the irrationality of the classical Dirichlet L-value $L(2,\chi_{-3})$. The argument applies a new kind of arithmetic holonomy bound to a well-known construction of Zagier. In fact our work also establishes the $\mathbf{Q}$-linear independence of $1$, $\zeta(2)$, and $L(2,\chi_{-3})$. We also give a number of other applications of our method to other problems in irrationality. Comment: 218 pages, comments welcome, minor expository changes, this is the submitted version of the paper |
Databáze: | arXiv |
Externí odkaz: |