The linear independence of $1$, $\zeta(2)$, and $L(2,\chi_{-3})$

Autor: Calegari, Frank, Dimitrov, Vesselin, Tang, Yunqing
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove the irrationality of the classical Dirichlet L-value $L(2,\chi_{-3})$. The argument applies a new kind of arithmetic holonomy bound to a well-known construction of Zagier. In fact our work also establishes the $\mathbf{Q}$-linear independence of $1$, $\zeta(2)$, and $L(2,\chi_{-3})$. We also give a number of other applications of our method to other problems in irrationality.
Comment: 218 pages, comments welcome, minor expository changes, this is the submitted version of the paper
Databáze: arXiv