On characterization of prime divisors of the index of a quadrinomial

Autor: Chatterjee, Tapas, Kumar, Karishan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\theta$ be an algebraic integer and $f(x)=x^{n}+ax^{n-1}+bx+c$ be the minimal polynomial of $\theta$ over the rationals. Let $K=\mathbb{Q}(\theta)$ be a number field and $\mathcal{O}_{K}$ be the ring of integers of $K.$ In this article, we characterize all the prime divisors of the discriminant of $f(x)$ which do not divide the index of $f(x).$ As a fascinating corollary, we deduce necessary and sufficient conditions for the monogenity of the field $K=\mathbb{Q}(\theta),$ where $\theta$ is associated with certain quadrinomials.
Comment: 23 pages
Databáze: arXiv