On characterization of prime divisors of the index of a quadrinomial
Autor: | Chatterjee, Tapas, Kumar, Karishan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\theta$ be an algebraic integer and $f(x)=x^{n}+ax^{n-1}+bx+c$ be the minimal polynomial of $\theta$ over the rationals. Let $K=\mathbb{Q}(\theta)$ be a number field and $\mathcal{O}_{K}$ be the ring of integers of $K.$ In this article, we characterize all the prime divisors of the discriminant of $f(x)$ which do not divide the index of $f(x).$ As a fascinating corollary, we deduce necessary and sufficient conditions for the monogenity of the field $K=\mathbb{Q}(\theta),$ where $\theta$ is associated with certain quadrinomials. Comment: 23 pages |
Databáze: | arXiv |
Externí odkaz: |