A law of large numbers concerning the number of critical points of isotropic Gaussian functions
Autor: | Nicolaescu, Liviu I. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For any smooth random Gaussian function $\Phi$ on $\mathbb{R}^m$ we denote by $Z_N(\Phi)$ the number of critical points of $\Phi$ inside the cube $[0,N]^m$. We prove that for certain isotropic random functions $\Phi$ the ratio $N^{-m}Z_N(\Phi)$ converges a.s. and $L^2$ to a universal explicit constant $C_m(\Phi)$. Comment: 26 pages, added an appendix on stationary random measures, added references |
Databáze: | arXiv |
Externí odkaz: |