A law of large numbers concerning the number of critical points of isotropic Gaussian functions

Autor: Nicolaescu, Liviu I.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: For any smooth random Gaussian function $\Phi$ on $\mathbb{R}^m$ we denote by $Z_N(\Phi)$ the number of critical points of $\Phi$ inside the cube $[0,N]^m$. We prove that for certain isotropic random functions $\Phi$ the ratio $N^{-m}Z_N(\Phi)$ converges a.s. and $L^2$ to a universal explicit constant $C_m(\Phi)$.
Comment: 26 pages, added an appendix on stationary random measures, added references
Databáze: arXiv