A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data

Autor: Pokala, Sai Deepesh, Bernert, Marie, Nanami, Takuya, Kohno, Takashi, Lévi, Timothée, Yvert, Blaise
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: As neural interfaces become more advanced, there has been an increase in the volume and complexity of neural data recordings. These interfaces capture rich information about neural dynamics that call for efficient, real-time processing algorithms to spontaneously extract and interpret patterns of neural dynamics. Moreover, being able to do so in a fully unsupervised manner is critical as patterns in vast streams of neural data might not be easily identifiable by the human eye. Formal Deep Neural Networks (DNNs) have come a long way in performing pattern recognition tasks for various static and sequential pattern recognition applications. However, these networks usually require large labeled datasets for training and have high power consumption preventing their future embedding in active brain implants. An alternative aimed at addressing these issues are Spiking Neural Networks (SNNs) which are neuromorphic and use more biologically plausible neurons with evolving membrane potentials. In this context, we introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data with a sequential approach. We show that, with only a handful number of neurons, this strategy is efficient to recognize highly overlapping multivariate temporal patterns, first on simulated data, and then on Mel Cepstral representations of speech sounds and finally on multichannel neural data. This approach relies on several biologically inspired plasticity rules, including Spike-timing-dependent plasticity (STDP), Short-term plasticity (STP) and intrinsic plasticity (IP). These results pave the way towards highly frugal SNNs for fully unsupervised and online-compatible learning of complex multivariate temporal patterns for future embedding in dedicated very-low power hardware.
Databáze: arXiv