Prompt-Guided Image-Adaptive Neural Implicit Lookup Tables for Interpretable Image Enhancement

Autor: Kosugi, Satoshi
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1145/3664647.3680743
Popis: In this paper, we delve into the concept of interpretable image enhancement, a technique that enhances image quality by adjusting filter parameters with easily understandable names such as "Exposure" and "Contrast". Unlike using predefined image editing filters, our framework utilizes learnable filters that acquire interpretable names through training. Our contribution is two-fold. Firstly, we introduce a novel filter architecture called an image-adaptive neural implicit lookup table, which uses a multilayer perceptron to implicitly define the transformation from input feature space to output color space. By incorporating image-adaptive parameters directly into the input features, we achieve highly expressive filters. Secondly, we introduce a prompt guidance loss to assign interpretable names to each filter. We evaluate visual impressions of enhancement results, such as exposure and contrast, using a vision and language model along with guiding prompts. We define a constraint to ensure that each filter affects only the targeted visual impression without influencing other attributes, which allows us to obtain the desired filter effects. Experimental results show that our method outperforms existing predefined filter-based methods, thanks to the filters optimized to predict target results. Our source code is available at https://github.com/satoshi-kosugi/PG-IA-NILUT.
Comment: Accepted to ACM Multimedia 2024
Databáze: arXiv