Composition operators between Beurling subspaces of Hardy space
Autor: | Anjali, V. A., Muthukumar, P., Shankar, P. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | V. Matache (J. Operator Theory 73(1):243--264, 2015) raised an open problem about characterizing composition operators $C_{\phi}$ on the Hardy space $H^2$ and nonzero singular measures $\mu_1$, $\mu_2$ on the unit circle such that $C_{\phi}({S_{\mu_1}} H^2)\subseteq {S_{\mu_2}} H^2,$ where $S_{\mu_i}$ denotes the singular inner function corresponding to the measure $\mu_i,i=1,2$. In this article, we consider this problem in a more general setting. We characterize holomorphic self maps $\phi$ of the unit disk $\mathbb{D}$ and inner functions $\theta_1, \theta_2$ such that $C_{\phi}(\theta_1 H^p)\subseteq \theta_2 H^p,$ for $p>0$. Emphasis is given to Blaschke products and singular inner functions as a special case. We also give an another measure-theoretic characterization to above question when $\phi$ is an elliptic automorphism. For a given Blaschke product $\theta$, we discuss about finding all self maps $\phi$ such that $\theta H^p$ is invariant under $C_\phi$. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |