Normal operators for momentum ray transforms, II: Saint Venant operator
Autor: | Jathar, Shubham R., Kar, Manas, Krishnan, Venkateswaran P., Sharafutdinov, Vladimir A. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The momentum ray transform $I_m^k$ integrates a rank $m$ symmetric tensor field $f$ on ${\mathbb R}^n$ over lines with the weight $t^k$, $I_m^kf(x,\xi)=\int_{-\infty}^\infty t^k\langle f(x+t\xi),\xi^m\rangle\,\mathrm{d}t$. Let $N^k_m=(I^k_m)^*I^k_m$ be the normal operator of $I_m^k$. To what extent is a symmetric $m$-tensor field $f$ determined by the data $(N_m^0f,\dots,N_m^rf)$ given for some $0\le r\le m$? The Saint Venant operator $W^r_m$ is a linear differential operator of order $m-r$ with constant coefficients on the space of symmetric $m$-tensor fields. We derive an explicit formula expressing $W^r_mf$ in terms of $(N_m^0f,\dots,N_m^rf)$. The tensor field $W^r_mf$ represents the full local information on $f$ that can be extracted from the data $(N_m^0f,\dots,N_m^rf)$. Comment: 10 pages. arXiv admin note: text overlap with arXiv:2401.00791 |
Databáze: | arXiv |
Externí odkaz: |