$L^2$ geometry of hyperbolic monopoles

Autor: Franchetti, Guido, Harland, Derek
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: It is well-known that the $L^2$ metric on the moduli space of hyperbolic monopoles, defined using the Coulomb gauge-fixing condition, diverges. This article shows that an alternative gauge-fixing condition inspired by supersymmetry cures this divergence. The resulting geometry is a hyperbolic analogue of the hyperk\"ahler geometry of Euclidean monopole moduli spaces.
Comment: 35 pages, no figures
Databáze: arXiv