$L^2$ geometry of hyperbolic monopoles
Autor: | Franchetti, Guido, Harland, Derek |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is well-known that the $L^2$ metric on the moduli space of hyperbolic monopoles, defined using the Coulomb gauge-fixing condition, diverges. This article shows that an alternative gauge-fixing condition inspired by supersymmetry cures this divergence. The resulting geometry is a hyperbolic analogue of the hyperk\"ahler geometry of Euclidean monopole moduli spaces. Comment: 35 pages, no figures |
Databáze: | arXiv |
Externí odkaz: |