Popis: |
As content generated by Large Language Model (LLM) has grown exponentially, the ability to accurately identify and fingerprint such text has become increasingly crucial. In this work, we introduce a novel black-box approach for fingerprinting LLMs, achieving an impressive 72% accuracy in identifying the correct family of models (Such as Llama, Mistral, Gemma, etc) among a lineup of LLMs. We present an evolutionary strategy that leverages the capabilities of one LLM to discover the most salient features for identifying other LLMs. Our method employs a unique "Hide and Seek" algorithm, where an Auditor LLM generates discriminative prompts, and a Detective LLM analyzes the responses to fingerprint the target models. This approach not only demonstrates the feasibility of LLM-driven model identification but also reveals insights into the semantic manifolds of different LLM families. By iteratively refining prompts through in-context learning, our system uncovers subtle distinctions between model outputs, providing a powerful tool for LLM analysis and verification. This research opens new avenues for understanding LLM behavior and has significant implications for model attribution, security, and the broader field of AI transparency. |