On best coapproximations in subspaces of diagonal matrices

Autor: Sain, Debmalya, Sohel, Shamim, Ghosh, Souvik, Paul, Kallol
Rok vydání: 2024
Předmět:
Zdroj: Linear Multilinear Algebra, 71(1), (2021), 47-62
Druh dokumentu: Working Paper
DOI: 10.1080/03081087.2021.2017835
Popis: We characterize the best coapproximation(s) to a given matrix $ T $ out of a given subspace $ \mathbb{Y} $ of the space of diagonal matrices $ \mathcal{D}_n $, by using Birkhoff-James orthogonality techniques and with the help of a newly introduced property, christened the $ * $-Property. We also characterize the coproximinal subspaces and the co-Chebyshev subspaces of $ \mathcal{D}_n $ in terms of the $ * $-Property. We observe that a complete characterization of the best coapproximation problem in $ \ell_{\infty}^n $ follows directly as a particular case of our approach.
Databáze: arXiv