Real-Time Coupled Cluster Theory with Approximate Triples

Autor: Wang, Zhe, Kristiansen, Håkon Emil, Pedersen, Thomas Bondo, Crawford, T. Daniel
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The formalism of real-time (RT) methods has been well-established during recent years, while no inclusion beyond the double excitation has been discussed. In this article, we introduce an implementation of real-time coupled cluster singles, doubles and approximate triples (CC3) method to explore the potential of a high excitation level. The CC3 method is well-known for its advantages in calculating dynamic properties and combining with the response theory. It is a well-qualified candidate for handling the interaction between the system and the applied field, and therefore suitable for a RT implementation. The derivation and implementation are first demonstrated following applications on calculating frequency-dependent properties. Terms with triples are calculated and added upon the existing CCSD equations, giving the method a formally $N^{7}$ scaling. The Graphics Processing Unit (GPU) accelerated implementation is utilized to reduce the computational cost. It is been verified that the GPU implementation can speed up the calculation by up to a factor of 17 for water cluster test cases. Additionally, the single-precision arithmetic is used and compared to the conventional double-precision arithmetic. No significant difference is found in the polarizabilities and $G'$ tensor results, but a higher percentage error for the first hyperpolarizabilities is observed. Compared to the linear response (LR) CC3 results, the percentage errors of RT-CC3 polarizabilities and RT-CC3 first hyperpolarizabilities are under 0.1% and 1%, respectively for the $H_2O$/cc-pVDZ test case. Furthermore, a discussion on the calculation of polarizabilities is included, which compares RT-CC3 with RT-CCSD and time-dependent nonorthogonal orbital-optimized coupled cluster doubles (TDNOCCD), in order to examine the performance of RT-CC3 and the orbital-optimization effect using a group of ten-electron systems.
Comment: 56 pages, 5 figures, 10 tables
Databáze: arXiv