$(P,Q)$ complex hypercontractivity

Autor: Ivanisvili, Paata, Kalantzopoulos, Pavlos
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\xi$ be the standard normal random vector in $\mathbb{R}^{k}$. Under some mild growth and smoothness assumptions on any increasing $P, Q : [0, \infty) \mapsto [0, \infty)$ we show $(P,Q)$ complex hypercontractivity $$ Q^{-1}(\mathbb{E} Q(|T_{z}f(\xi)|))\leq P^{-1}(\mathbb{E}P(|f(\xi)|)) $$ holds for all polynomials $f:\mathbb{R}^{k} \mapsto \mathbb{C}$, where $T_{z}$ is the hermite semigroup at complex parameter $z, |z|\leq 1$, if and only if \begin{align*} \left|\frac{tP''(t)}{P'(t)}-z^{2}\frac{tQ''(t)}{Q'(t)}+z^{2}-1\right|\leq \frac{tP''(t)}{P'(t)}-|z|^{2}\frac{tQ''(t)}{Q'(t)}+1-|z|^{2} \end{align*} holds for all $t>0$ provided that $F''>0$, and $F'/F''$ is concave, where $F = Q\circ P^{-1}$. This extends Hariya's result from real to complex parameter $z$. Several old and new applications are presented for different choices of $P$ and $Q$. The proof uses heat semigroup arguments, where we find a certain map $C(s)$, which interpolates the inequality at the endpoints. The map $C(s)$ itself is composed of four heat flows running together at different times.
Databáze: arXiv