Popis: |
Localization and delocalization are historic topics central to quantum and condensed matter physics. We discover a new delocalization mechanism attributed to a residue imaginary (part of) velocity $\operatorname{Im}(v)$, feasible for ground states or low-temperature states of non-Hermitian quantum systems under periodic boundary conditions. Interestingly, a disorder field contributing to $\operatorname{Im}(v)$ may allow strong-disorder-limit delocalization when $\operatorname{Im}(v)$ prevails over the Anderson localization. We demonstrate such delocalization with correlation and entanglement behaviors, as well as its many-body nature and generalizability to finite temperatures and interactions. Thus, the nontrivial physics of $\operatorname{Im}(v)$ significantly enriches our understanding of delocalization and breeds useful applications, e.g., in quantum adiabatic processes. |