Dirichlet spaces over chord-arc domains
Autor: | Wei, Huaying, Zinsmeister, Michel |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00208-024-02946-1 |
Popis: | If $U$ is a $C^{\infty}$ function with compact support in the plane, we let $u$ be its restriction to the unit circle $\mathbb{S}$, and denote by $U_i,\,U_e$ the harmonic extensions of $u$ respectively in the interior and the exterior of $\mathbb S$ on the Riemann sphere. About a hundred years ago, Douglas has shown that \begin{align*} \iint_{\mathbb{D}}|\nabla U_i|^2(z)dxdy&= \iint_{\bar{\mathbb{C}}\backslash\bar{\mathbb{D}}}|\nabla U_e|^2(z)dxdy &= \frac{1}{2\pi}\iint_{\mathbb S\times\mathbb S}\left|\frac{u(z_1)-u(z_2)}{z_1-z_2}\right|^2|dz_1||dz_2|, \end{align*} thus giving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan curve $\Gamma$ we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these $3$ (semi-)norms are equivalent if and only if $\Gamma$ is a chord-arc curve. Comment: 19 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |