Popis: |
We discuss dressing trapped ions with the near field of a trap integrated wire. Ramping a dressing field on/off adiabatically before/after an operation changes its effective Hamiltonian. The amplitude and detuning of the dressing field act as tunable degrees of freedom we can use to `customize' the properties of any operation. We propose three use cases for this general tool. First, we can generate `artificial' clock states, where we eliminate the (assumed to be small) linear sensitivity of a qubit. Second, we can break the degeneracies that often complicate shelving at low quantization fields\textemdash allowing us to implement operations with linearly polarized microwaves that would, otherwise, require circular polarization. Finally, we can implement laser-free single qubit gates on a set of `target' ions using fields that are separated from the rest of the computer in frequency space. |