A Bistatic ISAC Framework for LEO Satellite Systems: A Rate-Splitting Approach

Autor: Park, Juha, Seong, Jaehyup, Ryu, Jaehak, Mao, Yijie, Shin, Wonjae
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Aiming to achieve ubiquitous global connectivity and target detection on the same platform with improved spectral/energy efficiency and reduced onboard hardware cost, low Earth orbit (LEO) satellite systems capable of simultaneously performing communications and radar have attracted significant attention. Designing such a joint system should address not only the challenges of integrating two functions but also the unique propagation characteristics of the satellites. To overcome severe echo signal path loss due to the high altitude of the satellite, we put forth a bistatic integrated sensing and communication (ISAC) framework with a radar receiver separated from the satellite. For robust and effective interference management, we employ rate-splitting multiple access (RSMA), which splits and encodes users messages into private and common streams. We optimize the dual-functional precoders to maximize the minimum rate among all users while satisfying the Cramer-Rao bound (CRB) constraints. Given the challenge of acquiring instantaneous channel state information (iCSI) for LEO satellites, we exploit the geometrical and statistical characteristics of the satellite channel. To develop an efficient optimization algorithm, semidefinite relaxation (SDR), sequential rank-1 constraint relaxation (SROCR), and successive convex approximation (SCA) are utilized. Numerical results show that the proposed framework efficiently performs both communication and radar, demonstrating superior interference control capabilities. Furthermore, it is validated that the common stream plays three vital roles: i) beamforming towards the radar target, ii) interference management between communications and radar, and iii) interference management among communication users.
Comment: 33 pages, 8 figures, 2 tables
Databáze: arXiv