Turn-Level Empathy Prediction Using Psychological Indicators

Autor: Furniturewala, Shaz, Jaidka, Kokil
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: For the WASSA 2024 Empathy and Personality Prediction Shared Task, we propose a novel turn-level empathy detection method that decomposes empathy into six psychological indicators: Emotional Language, Perspective-Taking, Sympathy and Compassion, Extroversion, Openness, and Agreeableness. A pipeline of text enrichment using a Large Language Model (LLM) followed by DeBERTA fine-tuning demonstrates a significant improvement in the Pearson Correlation Coefficient and F1 scores for empathy detection, highlighting the effectiveness of our approach. Our system officially ranked 7th at the CONV-turn track.
Databáze: arXiv