The zeta-determinants and anlaytic torsion of a metric mapping torus
Autor: | Lee, Yoonweon |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We use the BFK-gluing formula for zeta-determinants to compute the zeta-determinant and analytic torsion of a metric mapping torus induced from an isometry. As applications, we compute the zeta-determinants of the Laplacians defined on a Klein bottle ${\mathbb K}$ and some compact co-K\"ahler manifold ${\mathbb T}_{\varphi}$. We also show that a metric mapping torus and a Riemannian product manifold with a round circle have the same heat trace asymptotic expansions. We finally compute the analytic torsion of a metric mapping torus for the Witten deformed Laplacian and recover the result of J. Marcsik in \cite{Ma}. |
Databáze: | arXiv |
Externí odkaz: |