Note on Fourier inequalities
Autor: | Saucedo, Miquel, Tikhonov, Sergey |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that the Hausdorff--Young inequality $\|{\widehat{f}}\|_{q(\cdot)} \leq C \|{f}\|_{p(\cdot)}$ with $q(x)=p'(1/x)$ and $p(\cdot)$ even and non-decreasing holds in variable Lebesgue spaces if and only if $p$ is a constant. However, under the additional condition on monotonicity of $f$, we obtain a full characterization of Pitt-type weighted Fourier inequalities in the classical and variable Lebesgue setting. |
Databáze: | arXiv |
Externí odkaz: |