Note on Fourier inequalities

Autor: Saucedo, Miquel, Tikhonov, Sergey
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that the Hausdorff--Young inequality $\|{\widehat{f}}\|_{q(\cdot)} \leq C \|{f}\|_{p(\cdot)}$ with $q(x)=p'(1/x)$ and $p(\cdot)$ even and non-decreasing holds in variable Lebesgue spaces if and only if $p$ is a constant. However, under the additional condition on monotonicity of $f$, we obtain a full characterization of Pitt-type weighted Fourier inequalities in the classical and variable Lebesgue setting.
Databáze: arXiv