A definitive majorization result for nonlinear operators
Autor: | Harvey, F. Reese, Lawson Jr, H. Blaine |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let ${\mathfrak g}$ be a Garding-Dirichlet operator on the set S(n) of symmetric $n\times n$ matrices. We assume that ${\mathfrak g}$ is $I$-central, that is, $D_I {\mathfrak g} = k I$ for some $k>0$. Then $$ {\mathfrak g}(A)^{1\over N} \ \geq\ {\mathfrak g}(I)^{1\over N} (\det\, A)^{1\over n} \qquad \forall\, A>0. $$ From work of Guo, Phong, Tong, Abja, Dinew, Olive and many others, this inequality has important applications. |
Databáze: | arXiv |
Externí odkaz: |