Complete minimal hypersurfaces in a hyperbolic space $H^{4}(-1)$
Autor: | Cheng, Qing-Ming, Peng, Yejuan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we study $n$-dimensional complete minimal hypersurfaces in a hyperbolic space $H^{n+1}(-1)$ of constant curvature $-1$. We prove that a $3$-dimensional complete minimal hypersurface with constant scalar curvature in $H^{4}(-1)$ satisfies $S\leq \frac{21}{29}$ by making use of the Generalized Maximum Principle, where $S$ denotes the squared norm of the second fundamental form of the hypersurface. Comment: 17pages |
Databáze: | arXiv |
Externí odkaz: |