Complete minimal hypersurfaces in a hyperbolic space $H^{4}(-1)$

Autor: Cheng, Qing-Ming, Peng, Yejuan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we study $n$-dimensional complete minimal hypersurfaces in a hyperbolic space $H^{n+1}(-1)$ of constant curvature $-1$. We prove that a $3$-dimensional complete minimal hypersurface with constant scalar curvature in $H^{4}(-1)$ satisfies $S\leq \frac{21}{29}$ by making use of the Generalized Maximum Principle, where $S$ denotes the squared norm of the second fundamental form of the hypersurface.
Comment: 17pages
Databáze: arXiv