Global well-posedness for rough solutions of defocusing cubic NLS on three dimensional compact manifolds
Autor: | Qionglei, Chen, Song, Yilin, Zheng, Jiqiang |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this article, we investigate the global well-posedness for cubic nonlinear Schr\"{o}dinger equation(NLS) $ i\partial_tu+\Delta_gu=|u|^2u$ posed on the three dimensional compact manifolds $(M,g)$ with initial data $u_0\in H^s(M)$ where $s>\frac{\sqrt{21}-1}{4}$ for Zoll manifold and $s>\frac{1+3\sqrt{5}}{8}$ for the product of spheres $\Bbb{S}^2\times\Bbb{S}^1$. We utilize the multilinear eigenfunction estimate on compact manifold to treat the interaction of different frequencies, which is more complicated compared to the case of flat torus [C. Fan, G. Staffilani, H. Wang, B. Wilson, Anal. PDE, 11 (2018), 919-944.] and waveguide manifold [Z. Zhao, J. Zheng, SIAM J. Math. Anal. 53 (2020), 3644-3660.]. Moreover, combining with the I-method adapted to the non-periodic case, bilinear Strichartz estimates along with the scale-invariant $L^p$ linear Strichartz estimates, we partially obtain the similar result of [Z. Zhao, J. Zheng, SIAM J. Math. Anal. 53 (2020), 3644-3660.] on non-flat compact manifold setting. As a consequence, we obtain the polynomial bounds of the $H^s$ norm of solution $u$. Comment: 30 pages, comments are welcome |
Databáze: | arXiv |
Externí odkaz: |